Soil thermal resistivity testing measures the capacity of the ground to conduct or dissipate heat. A correct understanding of the thermal properties of a soil or made ground is important for the design and installation of underground pipelines and transmission cables, as improper installations often can lead to premature failures. The thermal resistivity of a soil determines whether a buried power cable remains cool or overheats. Any heat produced by current flowing through an underground electricity power cable must be properly dissipated. A build-up of heat around the cable can reduce transmission efficiency, or in the worst cases cause the cable to melt. Potential problems can be identified by measuring an in-situ soil's thermal resistivity. Remedial measures include changing the capacity and insulation of the cables or installing corrective thermal backfills in the cable trench.
In-situ thermal resistivity testing with a needle probe
Soil thermal resistivity testing is normally carried out before a cable is laid out. Ideally the testing should be done at the proposed cover depth of the installation. Transient line heat source methods have been used to measure the thermal resistivity of porous materials for many years. A typical probe for measuring soil thermal resistivity is a handheld device comprising a needle with heater and temperature sensor inside, which conforms to specifications outlined in IEEE 442 and ASTM 5334. The probe is inserted into the ground to a specified depth and a current is passed through the heater. The system then monitors the temperature of the sensor over a period of time. Analysis of the sensor temperature determines the thermal resistivity of the material surrounding the probe. Heating times are kept as short as possible, to minimise thermally induced water movement and reduce reading times. Temperatures can be measured to accuracies of one thousandth of a degree. The final results are given in units of: C.m/W, where C = degrees Centigrade and W = Watts.
Assists the design and layout of underground pipelines
Prevents occurence of heat build-up around power transmission cables
Measures the ground's heat dissipation properties for a pipeline installation
Calculates the optimum cable specifications for the ground conditions
Determines if the in-situ ground needs replacing by cable bedding thermal backfill